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Brief reminder on planet formation

Safronov & Ruskol 1994
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Disk formation

Safronov & Ruskol 1994
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Settling to mid-plane

Safronov & Ruskol 1994
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Dust coagulation

Safronov & Ruskol 1994
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Ordinary growth

Safronov & Ruskol 1994
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Run-away growth

Safronov & Ruskol 1994
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Gas dispersal 

Safronov & Ruskol 1994
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Giant mergers

Safronov & Ruskol 1994
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Present state

Safronov & Ruskol 1994
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Planet formation
(1)

(2)
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Planet formation
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① Formation of a 
nebula disk

② Settling to mid-
plane

③ Dust coagulation

④ Orderly growth

⑤ Run-away growth

⑥ Gas dispersal 

⑦ Late-state mergers

⑧ Present state
Vesta, Ceres, other 

big asteroids

Safronov & Ruskol 1994
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A spectrum of protoplanet internal structure
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Weiss & Elkins-Tanton, 2013

➢ What was the differentiation state of planetesimals?
• Differentiated or undifferentiated?
• How much water?

➢ What can interior structure tell us about the accretion process?
• Fast or slow
• Early or late



How do we study a planetary interior with 

gravity and topography?
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➢ We study the interior but looking at its response 
to various forcings such as:

• Rotation

• Surface loads

• Subsurface loads



Hydrostatic equilibrium

➢ In hydrostatic equilibrium
• Surfaces of constant density, pressure and 

potential coincide
• No shear stresses 
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➢ In hydrostatic equilibrium
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Hydrostatic equilibrium



ρ = ρ(r), ω
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Hydrostatic equilibrium

➢ In hydrostatic equilibrium
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easy
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Hydrostatic equilibrium

➢ In hydrostatic equilibrium



ρ = ρ(r), ω

ρ = ρ(r), ω

➢ Not in hydrostatic equilibrium

hard

easy
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Hydrostatic equilibrium

➢ In hydrostatic equilibrium



Spherical Harmonics
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➢ Shape

➢ Gravitational potential
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Spherical Harmonics
➢ Shape

U – gravitational potential 
φ – latitude
λ – longitude
r – radial distance
n – degree
m – order

➢ Gravitational potential
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Admittance

Non-linear
two-layer isostatic

Zn - gravity-topography admittance

Zn =
Sgt

Stt

surface load

=
gravity

topography
for a given wavelength
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Admittance

Zn =
GM

R3

3(n+1)

2n+1

rcrust
rmean

Zn - gravity-topography admittance

Zn =
Sgt

Stt

=
gravity

topography
for a given wavelength

➢ Linear two-layer hydrostatic model
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Admittance

➢ Linear isostatic model

Zn =
GM

R3

3(n+1)

2n+1

rcrust
rmean

1- 1-
Dcomp

R

æ

è
ç

ö

ø
÷

né

ë

ê
ê

ù

û

ú
ú

➢ Linear two-layer hydrostatic model

Zn =
GM

R3

3(n+1)

2n+1

rcrust
rmean

➢ Linear two-layer isostatic model

Zn - gravity-topography admittance

Zn =
Sgt

Stt

=
gravity

topography
for a given wavelength

UCLA planetary seminar 



Gravity anomalies
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• Free-air anomaly σFA = σobs – σmodel

σmodel = gravity of 
hydrostatic figure 
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• Free-air anomaly

• Bouguer anomaly

σFA = σobs – σmodel

σBA = σobs – σmodel

σmodel =

σmodel =

gravity of 
hydrostatic figure 

gravity of shape 
assuming ρ

ρ



Gravity anomalies
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• Free-air anomaly

• Bouguer anomaly

• Isostatic anomaly

σFA = σobs – σmodel

σBA = σobs – σmodel

σIA = σobs – σmodel

σmodel =

σmodel =

σmodel =

gravity of 
hydrostatic figure 

gravity of shape 
assuming ρ

gravity assuming 
isostasy for ρ1, ρ2, h

h – depth of 
compensation

ρ1

ρ2

ρ



Example: uncompensated topography
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Lower 𝝆

Higher 𝝆



Example: compensated topography
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Lower 𝝆

Higher 𝝆



Example: supercompensated topography
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Lower 𝝆

Higher 𝝆
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Isostatic compensation

➢ Example of a spherical cap (depression) relaxation

Interface evolution Admittance evolution 
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What did we know before Dawn?

McCord and Sotin, 2005Ruzicka et al., 1997

Vesta Ceres

NAML

NAML
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What did we know before Dawn?
Vesta Ceres

• HED-meteorites enabled detailed 
geochemical modeling of Vesta

• Ceres interiors were essentially 
unconstrained

McCord and Sotin, 2005Ruzicka et al., 1997
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Dawn geophysical data
• Shape model 

• Stereophotogrammetry (SPG) from DLR 
• Stereophotoclinometry (SPC) from JPL
• Mutually consistent with the accuracy much better 

than the spatial resolution of gravity field

• Gravity field
• Accurate up to n = 18 (λ=93 km) for Vesta

(Konopliv et al., 2014)
• Accurate up to n = 17 (λ=174 km) for Ceres

(Konopliv et al., 2017)

• Assumptions we have to make:
• Multilayer model with uniform density layers
• Range of core densities for Vesta
• Range of crustal densities from HEDs for Vesta
• Can’t really assume anything for Ceres
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Vesta and Ceres

Gaskell, 2012 Park et al., 2016
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Gaskell, 2012 Park et al., 2016

Vesta and Ceres
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Vesta and Ceres topography

Parameter Vesta Ceres

Equatorial flattening 0.0262 0.0043

Geoidal height range (km) 37.9 13.2

Geoidal height RMS (km) 5.2 2.1

Hypsograms of Vesta and Ceres

*Hypsogram is a fancy word for the 
“histogram of elevations”

Shape statistics

• Ceres is closer to hydrostatic 
equilibrium than Vesta

• Smoother topography at Ceres
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Flattening vs rotation rate

➢ Nearly homogeneous structure is 
implied for Ceres based on the 
shape flattening.

➢ However, gravity implies 
differentiation 

a
c

homogeneous
more oblate

differentiated

less oblate



Vesta Internal Structure
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Contours are mantle density [kg/m3] 
• Vesta is not presently in 

hydrostatic equilibrium 

• No unique solution only from 
gravity/topography, need an 
extra constraint

• Geochemically motivated 3-
layer interior structure 
(Ruzicka et al., 1997)

• Densities constrained by the 
Howardite-Eucrite-Diogenite
(HED) meteorites

Ermakov et al., 2014
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Contours are mantle density [kg/m3] 

Solution from Dawn
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Vesta Internal Structure
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Core radius of 110 to 155 km

Contours are mantle density [kg/m3] 
• Vesta is not presently in 

hydrostatic equilibrium 

• No unique solution only from 
gravity/topography, need an 
extra constraint

• Geochemically motivated 3-
layer interior structure 
(Ruzicka et al., 1997)

• Densities constrained by the 
Howardite-Eucrite-Diogenite
(HED) meteorites

Ermakov et al., 2014
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Early efficient viscous relaxation of Vesta

• Vesta was likely close to 
hydrostatic equilibrium in its 
early history (Fu et al., 2014).

• Vesta’s northern terrains likely 
reflect its pre-impact 
equilibrium shape.

• Major impact occurred when 
Vesta was effectively non-
relaxing leading to 
uncompensated Rheasilvia and 
Veneneia basins.
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Early efficient viscous relaxation of Vesta
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Vesta Crustal Thickness

Ermakov et al., 2014

➢ Crustal thickness inversion 
show a belt of thicker crust 
around the Southern 
Basins

➢ Crater counting reveals 
that the northern Vesta 
terrains are old (>3Gy)

Marchi et al., 2012
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Vesta Crustal Thickness

Marchi et al., 2012

Ermakov et al., 2014

➢ Crustal thickness inversion 
show a belt of thicker crust 
around the Southern 
Basins

➢ Crater counting reveals 
that the northern Vesta 
terrains are old (>3Gy)
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Local structures on Vesta

Ermakov et al., 2014

Gaskell, 2012
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Vesta Bouguer Anomaly

Ermakov et al., 2014
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Summary on Vesta

➢ Formed early (< 5 My after CAI)

➢ Once hot and hydrostatic, Vesta is no longer either 

➢ Differentiated interior

➢ Most of topography acquired when Vesta was already 
cool => uncompensated topography

➢ Combination of gravity/topography data with 
meteoritic geochemistry data provides constraints on 
the internal structure
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Ceres Expectations

• Bland et al., 2013 predicted 
that craters on Ceres would 
quickly relax in an ice-
dominated shell

o Equatorial warmer craters 
would relax faster than 
colder polar craters 

• Bland et al., 2016 did not find 
evidence for such relaxation 
pattern

o No latitude dependence of 
crater depth

Bland, 2013
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Ceres observation

• Bland et al., 2013 predicted 
that craters on Ceres would 
quickly relax in an ice-
dominated shell

o Equatorial warmer craters 
would relax faster than 
colder polar craters 

• Bland et al., 2016 did not find 
evidence for such relaxation 
pattern

o No latitude dependence of 
crater depth

Crater depth study
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Evidence for viscous relaxation

• More general approach: 
study topography power 
spectrum

• Power spectra for Vesta 
closely fits with the 
power law to the lowest 
degrees (λ < 750 km)

• Ceres power spectrum 
deviates from the power 
law at λ > 270 km
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Finite element model

• Assume a density and 
rheology structure

• Solve Stokes equation 
for an incompressible 
flow using deal.ii library

• Compute the evolution 
of the outer surface 
power spectrum

Fu et al., 2014; Fu et al, 2017
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Finite element model

• Assume a density and 
rheology structure

• Solve Stokes equation 
for an incompressible 
flow using deal.ii library

• Compute the evolution 
of the outer surface 
power spectrum

Fu et al., 2014; Fu et al, 2017



Ceres internal structure

67

• Simplest model to 
interpret the gravity-
topography data

Using Tricarico 2014 for computing hydrostatic 
equilibrium

green contours = C/Ma2

UCLA planetary seminar 



Ceres internal structure
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• Simplest model to 
interpret the gravity-
topography data

• Only 5 parameters: 
two densities, two 
radii and rotation 
rate

green contours = C/Ma2

Using Tricarico 2014 for computing hydrostatic 
equilibrium
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Ceres internal structure

69

• Simplest model to 
interpret the gravity-
topography data

• Only 5 parameters: 
two densities, two 
radii and rotation 
rate

• Yields C/Ma2 = 0.373
C/M(Rvol)

2 = 0.392

green contours = C/Ma2

Using Tricarico 2014 for computing hydrostatic 
equilibrium

UCLA planetary seminar 
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Example of a FE modeling run

mantle

crust

× plastic failure location

relaxation in the frequency domain relaxation in the spatial domain
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Ice shell, rocky interior
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Ice shell, rocky interior
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Ice shell, rocky interior
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Ice shell, rocky interior

• Conclusion: relaxation is too fast
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Stiff surface, weak interior

ηsurface= 6×1026 Pa s, decays 10x per 10 km
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Stiff surface, weak interior

ηsurface= 6×1026 Pa s, decays 10x per 10 km
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Stiff surface, weak interior

ηsurface= 6×1026 Pa s, decays 10x per 10 km
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Rheology and density constraints

Fu et al., 2017

Ermakov et al., 2017
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➢ Must be dominated by rock-
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Ceres’ crust <35 vol%

➢ Crust dominated salt and 
clathrates phases

➢ Low core density implies its 
hydrated state
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Fu et al., 2017

Ermakov et al., 2017
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Rheology and density constraints

➢ Ceres crust is ~ 1000 times 
stronger than water ice

➢ Must be dominated by rock-
like materials. Water ice in the 
Ceres’ crust <35 vol%

➢ Crust dominated salt and 
clathrates phases

➢ Low core density implies its 
hydrated state
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Rheology and density constraints

➢ Ceres crust is ~ 1000 times 
stronger than water ice

➢ Must be dominated by rock-
like materials. Water ice in the 
Ceres’ crust <35 vol%

➢ Crust dominated salt and 
clathrates phases

➢ Low core density implies its 
hydrated state
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Compensation: Vesta vs Ceres
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Compensation for Vesta and Ceres 

• Vesta topography is 
uncompensated

• Vesta acquired most of 
its topography when 
the crust was already 
cool and not-relaxing

• Ceres topography is 
compensated

• Lower viscosities (compared 
to Vesta) enabled relaxation
of topography to the isostatic 
state
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Local structures on Ceres

Reference ellipsoid:
a = 445.9 km
c = 482.0 km

Park et al., 2016

Height above geoid
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Isostatic anomaly

Ermakov et al., 2017



Ermakov et al., 2017
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Isostatic anomaly

Ermakov et al., 2017

Kerwan

Occator

Ahuna
Mons
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Occator isostatic anomaly
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Buoyancy-driven anomaly
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Buoyancy-driven anomaly

Ermakov et al., 2017
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Mascons

Zuber et al., 2016

Bouguer anomaly in Orientale 
basin on the Moon

Kerwan isostatic anomaly 

Ermakov et al., 2017
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Mascons

Kerwan isostatic anomaly 

Ermakov et al., 2017 Bland et al., 2018
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Mascons

Devolatilized plug
∆𝞀 ≈ 0.1 - 0.2 g/cc

Mantle uplift
∆𝞀 ≈ 1.2 g/cc

Kerwan isostatic anomaly 

Bland et al., 2018Ermakov et al., 2017
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Ahuna Mons

4 km

17 km
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Vesta and Ceres comparative evolution
Vesta 

Ceres

Time

Presumably 
chondritic

chondritic + 
volatiles

Late accretion

Early accretion
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Time

Vesta 

Ceres

Presumably 
chondritic

chondritic + 
volatiles

Liquid 
ocean

Extensive water-
rock interactionsLate accretion

Early accretion
magma ocean and 

differentiation
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Vesta and Ceres comparative evolution

Time

Vesta 

Ceres

Fe, Ni

Ol

HEDLiquid 
ocean

Presumably 
chondritic

chondritic + 
volatiles

Extensive water-
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Vesta and Ceres comparative evolution
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A spectrum of planetesimal differentiation
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Weiss & Elkins-Tanton, 2013



• Cooler history
• late formation 
• and/or heat transfer due to hydrothermal circulation

• Partially differentiated interior 
• Experienced viscous relaxation
• Much lower surface viscosities (compared to Vesta) 

allowed compensated topography 
• Ceres’ crust is light (based on admittance analysis) and 

strong (based on FE relaxation modeling)
• Not much water ice in Ceres crust (<35 vol%) now

UCLA planetary seminar 
10

1

Summary

• Formed early (< 5 My after CAI)
• Once hot and hydrostatic, Vesta is no longer either 
• Differentiated interior
• Most of topography acquired when Vesta was already 

cool => uncompensated topography
• Combination of gravity/topography data with meteoritic 

geochemistry data provides constraints on the internal 
structure



Mascons on Ceres
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Bland et al., 2018

Observed anomaly



Mascons on Ceres

UCLA planetary seminar 10
3

Bland et al., 2018

Mantle uplift

Devolatilized plug

Observed anomaly



Mascons on Ceres
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Bland et al., 2018

Mantle uplift
∆𝞀 ≈ 1.2 g/cc

Modeled anomaly



Mascons on Ceres
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Bland et al., 2018

Mantle uplift

Devolatilized plugDevolatilized plug
∆𝞀 ≈ 0.1 - 0.2 g/cc

Modeled anomaly



Crustal composition constraints
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Ermakov et al., 2017



Internal structures of Vesta and Ceres

HED-
dominated 

crust

Ceres➔

➢ Crust is light (1.1-1.4 g/cc) 

and mechanically rock-

like w

➢ Mantle density ~2.4 g/cc 

and unlithified at least to a 

depth of 100 km

➢ Possible dehydrated rocky 

core remains 

unconstrained

Vesta

➢ Crustal density constrained by HEDs and 

admittance (2.8 g/cc)

➢ Assuming density of iron meteorites (5-8 

g/cc), the core radius is 110 – 155 km

Olivine-rich 
mantle

Fe, Ni-rich 
core

Salts, 
clathrates, 
water ice,
serpentine 

philosilicates

hydrated rocky 
mantle

dehydrated
core ?
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Two-layer model
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• Simplest model to 
interpret the gravity-
topography data

• Only 5 parameters: 
two densities, two 
radii and rotation 
rate

• Yields C/Ma2 = 0.373
C/M(Rvol)

2 = 0.392
Using Tricarico 2014 for computing 
hydrostatic equilibrium

green contours = C/Ma2



Latitude dependence of relaxation

UCLA planetary seminar 10
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Ermakov et al., in prep

more relaxed 
equatorial 
topography



Gravity and topography in spherical harmonics
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Isostatic model
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Non-linear
two-layer isostatic

Two-layer hydrostatic

➢ Linear isostatic model

Zn - gravity-topography admittance

➢ Linear two-layer hydrostatic model
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Why Vesta?

• Unique basaltic spectrum
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Why Vesta?

• Unique basaltic spectrum

• A group of asteroids in the 
dynamical vicinity of Vesta 
with similar spectra
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Why Vesta?

• Unique basaltic spectrum

• A group of asteroids in the 
dynamical vicinity of Vesta 
with similar spectra

• Large depression in the 
southern hemisphere of Vesta
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Image credit: NASA/HST

Thomas et al., 1997



Why Vesta?

• Unique basaltic spectrum

• A group of asteroids in the 
dynamical vicinity of Vesta 
with similar spectra

• Large depression in the 
southern hemisphere of Vesta

• A group of Howardite-Eucrite-
Diogenite (HED) meteorites, 
with similar reflectance 
spectra
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 Reflectance spectra of eucrite Millbillillie
from Wasson et al. (1998)

 V-type asteroids spectra from Hardensen et 
al., (2014)



Why Vesta?

• Unique basaltic spectrum

• A group of asteroids in the 
dynamical vicinity of Vesta 
with similar spectra

• Large depression in the 
southern hemisphere of Vesta

• A group of Howardite-Eucrite-
Diogenite (HED) meteorites, 
with similar reflectance 
spectra

• Strongest connection between 
a class of meteorites and an 
asteroidal family

UCLA planetary seminar 11
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 Reflectance spectra of eucrite Millbillillie
from Wasson et al. (1998)

 V-type asteroids spectra from Hardensen et 
al., (2014)



Note on Vening-Meinesz and Kaula rules
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• Vening-Meinesz rule for variance of topography (Vening-
Meinesz, 1951)

• Kaula law for RMS of gravity (Kaula, 1963)

Vt ~ 1/n2

Mg ~ 1/n2

Vt ~ 1/n2  => Mt ~ 1/n1.5 => Mg ~ 1/n2.5

• Are these two rules consistent assuming uncompensated 
topography?

• But Kaula rule says Mg ~ 1/n2 NOT Mg ~ 1/n2.5

• Typically assumed in the literature Kaula and Vening-Meinesz rules 
are not mutually consistent assuming uncompensated topography 



RMS spectra
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AsteroidsPlanets

• We resample power spectra at uniformly spaced intervals in log10𝜆
• We compute power law fits only for the uncompensated end (circles) of the 

power spectra.
• We also don’t include the end of the Vesta spectrum because we suspect it is 

approaching shape model resolution.



Power laws

UCLA planetary seminar 11
9

• General form of a power law • Power law assuming (inverse) surface 
gravity scaling (g ~ R*𝛒)

• If we take a log10 of M, we get an equation of a hyperplane 

• In our data set, we have a lot of points along the 𝜆 direction and not as many points 
on the other two (R and 𝛒) directions. 
• In the R and 𝛒 directions, we have as many data points as we have bodies
• In the 𝜆 direction, we have as many data points as many we have 𝜆 bins.



Results of the MCMC runs
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Planets, gravity scaling
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Planets, gravity scaling
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𝝌𝐫𝐞𝐝
𝟐 =491

Not a very good fit

circles = best-fit model
dots with errorbars = data

• We compare best-fit model (such A, 𝛂3 that minimize the misfit) against data



Planets, general scaling
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Planets, general scaling
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𝝌𝐫𝐞𝐝
𝟐 =101

Somewhat better 
but still a bad fit

circles = best-fit model
dots with errorbars = data

• We compare best-fit model (such A, 𝛂1, 𝛂2, 𝛂3 that minimize the misfit) against data



Asteroids, gravity scaling
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Asteroids, gravity scaling
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𝝌𝐫𝐞𝐝
𝟐 =47

Somewhat better 
but still a bad fit

circles = best-fit model
dots with errorbars = data

• We compare best-fit model (such A, 𝛂3 that minimize the misfit) against data



Asteroids, general scaling
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Asteroids, general scaling
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𝝌𝐫𝐞𝐝
𝟐 =11

Much better fit.

circles = best-fit model
dots with errorbars = data

• We compare best-fit model (such A, 𝛂1, 𝛂2, 𝛂3 that minimize the misfit) against data



A priori constraint on gravity RMS
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Choose R and 𝝆

Given R and 𝝆 and a range of 
𝝀, sample multivariate 
normal distribution to get A, 
𝜶1,𝜶2,𝜶3

Given A, 𝜶1,𝜶2,𝜶3, compute 
topography RMS spectrum 

Given topography RMS 
spectrum, generate SH 
coefficients that follow the 
chosen spectrum 

Compute gravity-from-
topography using Wieczorek
& Phillips 1998 until 
convergence w.r.t. to the 
power of topography

Find the upper and lower 
bounds on the gravity RMS 
spectum



Summary
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• Topography RMS spectra of 4 terrestrial planets and the 
Moon cannot be simultaneously fit with a single power law 
of the gravity-scaling or general form.

• Topography RMS spectra of asteroids CANNOT be 
satisfactorily fit with a power law the gravity-scaling form.

• Topography RMS spectra of asteroids CAN be satisfactorily
fit with a power law of the general form.

• Despite having different internal structure, composition and 
mechanical properties of the surface layer, the asteroid 
topography spectra can be effectively modeled as a general 
power law



Gravity RMS spectra
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-2 and -3 slopes are 
shown are red and 
blue lines

• Let’s look at how the slope of the gravity RMS 
spectrum varies by doing linear piece-wise fits.



Slopes of piecewise fitted gravity RMS spectra
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• Actually, the RMS spectra slopes vary quite a bit.



Ceres’ obliquity history
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Ermakov et al., in prep. for GRL

• Obliquity varies between 2.4° and 19.7°
• The main period is 24.5 ky
• We happen to visit Ceres when its obliquity is minimal



Bright Crater Floor Deposits (BCFDs)
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Ermakov et al., in prep. for GRL



Why Ceres?

• Largest body in the asteroid 
belt

• Low density implies high 
volatile content 

• Conditions for subsurface 
ocean

• Much easier to reach than 
other ocean worlds

UCLA planetary seminar 13
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Vesta

Ceres

Ceres location in the asteroid belt



Why Ceres?

• Largest body in the asteroid 
belt

• Low density implies high 
volatile content 

• Conditions for subsurface 
ocean

• Much easier to reach than 
other ocean worlds

• Major unexplored object in 
the asteroid belt
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Vesta

Ceres

Ceres location in the asteroid belt



What did we know before Dawn

• Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the 
condensation of Calcium Aluminum-rich Inclusions (CAIs), and 
later differentiated into a water mantle and a mostly anhydrous 
silicate core.
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What did we know before Dawn

• Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the 
condensation of Calcium Aluminum-rich Inclusions (CAIs), and 
later differentiated into a water mantle and a mostly anhydrous 
silicate core.

• Zolotov 2009

Ceres formed relatively late from planetesimals consisting of 
hydrated silicates. 
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What did we know before Dawn

• Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the 
condensation of Calcium Aluminum-rich Inclusions (CAIs), and 
later differentiated into a water mantle and a mostly anhydrous 
silicate core.

• Zolotov 2009

Ceres formed relatively late from planetesimals consisting of 
hydrated silicates. 

• Bland 2013

If Ceres does contain a water ice layer, its warm diurnally-
averaged surface temperature ensures extensive viscous 
relaxation of even small impact craters especially near equator
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